A PROBLEM OF EVASION FROM MANY PURSUERS

PMM Vol. 40, № 1, 1976, pp. 14-24 F. L. CHERNOUS'KO (Moscow) (Received April 22, 1975)

We show that a controlled point whose velocity is bounded in magnitude can, by remaining in a neighborhood of a given motion, avoid an exact contact with any number of pursuing points whose velocities are less than the velocity of the evading point. We construct a control method ensuring evasion from all pursuers by a finite distance and an arbitrarily small deviation of the point's motion from a given straight line.

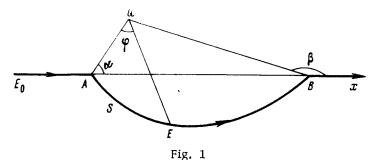
1. Statement of the problem. We consider the motions of one evading point E and n pursuing points P_1, \ldots, P_n in an m-dimensional space, m > 1. The velocities of all the points can change directions arbitrarily and are bounded in magnitude. The velocity of point E does not exceed a constant v, while the velocities of all pursuers P_1, \ldots, P_n do not exceed kv, where k is a constant, 0 < k < 1. At the initial instant $t = t_0$ point E is in position E_0 not coinciding with any of the points P_1, \ldots, P_n . A ray x passing through point E_0 and a number $\varepsilon > 0$ are specified. The motion of point E along ray x with velocity v is termed nominal. We are required to form a control method for point E, by which this point is at a finite distance from all P_1, \ldots, P_n for all $t \ge t_0$ while remaining in the ε -neighborhood of the nominal motion. We assume that at each instant t the velocity of point E can be chosen as a function of the position of points E, P_1, \ldots, P_n on the interval $[t_0, t]$, as well as of the constants v, k, ε and of ray x. For the control method found we are asked to estimate the minimal distance δ from point E to the points P_1, \ldots, P_n for $t \ge t_0$.

A control method solving the problem posed is constructed below and the quantity δ is estimated for it. Here the trajectory of point E consists of a finite number of arcs of smooth curves (logarithmic spirals and segments of ray x) and coincides with ray x for fairly large t. To realize the motion it is sufficient to know the positions of points P_1, \ldots, P_n only at those instants that they approach point E by specified distances.

Without loss of generality we can assume m = 2, i.e. motion takes place in a plane. Actually, for m > 2 we select an arbitrary plane passing through ray x and we consider that point E moves in this plane, evading the projections of points P_1, \ldots, P_n onto this plane. Obviously, the velocities of the projections do not exceed kv. If this evasion problem is solved, then by the same token so is the original problem for m > 2. Therefore, below we assume m = 2.

2. Evasion from one point. Let us construct the evasion maneuver of point E from one pursuing point P, for which the inequality $EP \ge L$ is satisfied for all $t \ge t_0$. Here $L \ge 0$ is an arbitrary given number not exceeding the distance EP at instant t_0 . We specify the motion of point E as consisting of three sections; the first and second sections may be of zero length. The velocity of point E on all the sections is constant and equals v. On the first section $[t_0, t_A]$ point E moves along ray x

from the initial point E_0 to a point A at which the equality EP = L first is satisfied. On the second section $[t_A, t_B]$ point E moves along an arc of a certain curve AB whose endpoints lie on ray x, while on the third section $[t_B, \infty]$ it again moves along ray x from point B to ∞ .



We find the curve AB from the condition that the inequality $EP \ge L$ is fulfilled even if the position of point P for $t > t_A$ is not measured. Let us introduce the following notation: Q is the position of point P at instant t_A ; α is the angle between ray x and segment AQ, where $0 \le \alpha \le \pi$; R is the current distance QE; φ is the current angle between the segments QE and QA, and s is the arc length of curve AE, counted from point A (Fig. 1). Since the velocity of point P does not exceed kv, we have

$$EP \geqslant QE - kv (t - t_A) = R - ks \qquad (2.1)$$

The condition $EP \ge L$ is satisfied on arc AB if we set

$$R - ks = L \tag{2.2}$$

in (2.1). Differentiating equality (2.2), we obtain

$$dR = kds = k (dR^2 + R^2 d\varphi^2)^{1/2}$$
(2.3)

Integrating the differential equation (2,3) under the initial condition R(0) = L, we find the function $R(x) = L_{1} + L_{2}$

$$R(\varphi) = Le^{\lambda \varphi} \tag{2.4}$$

Here and later we use the notation

$$\lambda = k (1 - k^2)^{-1/2} = \operatorname{ctg} \gamma, \quad k = \lambda (1 + \lambda^2)^{-1/2} = \cos \gamma \qquad (2.5)$$

 $0 < \gamma < \pi / 2$

Using relations (2.4) and (2.5) it is easy to prove that the tangent at point A to the logarithmic spiral (2.4) makes an angle of $\pi - \gamma$ with segment 0A. Therefore, two cases offer themselves, depending upon the values of $\alpha \in [0, \pi]$. If $\pi - \gamma \leqslant \alpha \leqslant \pi$, then for $\phi > 0$ the spiral (2.4) in the neighborhood of point A lies to the same side of ray x as does point Q. In this case we set B = A; the arc AB shrinks to a point. Here the second section of the motion is absent and point E moves along ray x for the whole time; the angle $\beta = QBx$ equals α and lies within the limits $[\pi - \gamma, \pi]$. When $0 \leqslant \alpha < \pi - \gamma$ the spiral AB intersects ray x at point B (Fig. 1). The angle ϕ at point B equals $\beta - \alpha$, where $\beta = \angle QBx$. Substituting $\phi = \beta - \alpha$ and (2.4) into the equation of ray x in the form $\overline{R}(\phi)\sin(\phi + \alpha) =$

 $L \sin \alpha$, we obtain a transcendental equation for β

$$f(\beta) = f(\alpha), f(\beta) = e^{\lambda\beta} \sin\beta, \alpha < \beta \leqslant \pi$$
 (2.6)

The function $f(\beta)$ of (2.6) vanishes at the endpoints of the interval $[0, \pi]$ and, as an investigation shows, increases monotonically on the interval $[0, \pi - \gamma]$ and decreases monotonically on the interval $[\pi - \gamma, \pi]$. Hence it follows that when $0 \leqslant \alpha \leqslant \pi - \gamma$, Eq. (2.6) has in the interval $[\alpha, \pi]$ the unique solution $\beta > \alpha$ lying within the limits $\pi - \gamma < \beta \leqslant \pi$. Thus, in both cases, i.e. for any $\alpha \in [0, \pi]$, we have, with due regard to notation (2.5),

$$\pi - \gamma \leqslant \beta \leqslant \pi, \quad \cos \beta \leqslant -k \tag{2.7}$$

The inequality $EP \ge L$ is satisfied by construction on the first two sections $(t_0 \le t \le t_B)$ for the evasion maneuver described. For an arbitrary instant $t > t_B$ of the third section we have

$$EP \ge QE - kv (t - t_A) = (QB^2 + EB^2 - 2EB \cdot QB \cos \beta)^{1/t} - (2.8)$$

kv (t - t_B) - kv (t_B - t_A) \ge QB - EB \cos \beta - kEB - kS_{AB}

According to (2.2) the length S_{AB} of arc AB equals $k^{-1} (QB - L)$. Using now inequality (2.7), from (2.8) we have that $EP \ge L$. Therefore, in all cases the maneuver constructed ensures the inequality $EP \ge L$ for all $t \ge t_0$.

3. Maneuver for evasion from n points. We construct the proposed method of evading n pursuers on the basis of the maneuver of Sect. 2. By δ_0 we denote the minimal one of two distances EP_1, \ldots, EP_n at the instant t_0 ; by hypothesis, $\delta_0 > 0$. The motion of point E depends upon parameters L and \varkappa such that $0 < L \leq \delta_0$ and $0 < \varkappa < 1$; these parameters will be chosen below. We introduce the notation $L_j = L \varkappa^{j-1}$ and we call the instant t_j , when the condition

 $\min_{i} EP_{i} = L_{j} \equiv L \varkappa^{j-1}, \quad i = 1, \dots, n, \ j = 1, 2, \dots, 0 < \varkappa < 1$ (3.1)

is first satisfied after the start of motion, the instant of j-th encounter.

We specify the motion of point E in the following manner: at each instant t point E moves at a velocity v, constant in magnitude, along a program trajectory for the given instant t. Let us define the concept of a program trajectory for each instant $t \ge t_0$. For any $t \ge t_0$ the current program trajectory is an oriented piecewise-smooth curve without selfintersections, starting from the current position of point E at instant t and going off to infinity along arc x. For $t = t_0$ the program trajectory is ray x. On the intervals $t_j < t < t_{j+1}$, $j = 0, 1, \ldots$ the origin of the program trajectory is moving along it together with point E; here the program trajectory is not altered in other respects. At the encounter instants t_j , j = 1, 2, ... the program trajectory is reconstructed in the following way. By A_j and Q_j we denote, respectively, the positions at instant t_i of point E and of that one of points P_i for which the minimum in relation (3.1) is achieved. If for $t = t_j$ the minimum in (3.1) is achieved simultaneously for several points P_i , then as Q_j we select, for definiteness, that one of them for which the number i is the least. We draw two L_j -spirals whose equations have the form

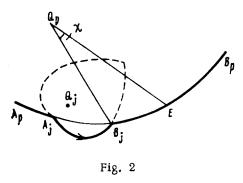
$$R_j = L_j \exp(\lambda \varphi_j), \quad 0 \leqslant \varphi_j \leqslant \pi, \qquad j = 1, 2, \ldots$$

Here R_j is the current distance from Q_j ; φ_j is the polar angle read off from the straight line Q_jA_j in two opposite directions for the two spirals being examined. The arcs of the L_j -spirals (3.2) are mirror-symmetric to each other relative to segment Q_jA_j and have common endpoints for $\varphi_j = 0$ and $\varphi_j = \pi$.

Suppose that the program trajectory has been constructed for $t = t_j - 0$ and that it starts at point A_j . If for $t = t_j - 0$ the program trajectory has no other common points besides A_j with the L_j -spirals (3.2) constructed, then the program trajectory for $t = t_j + 0$ will be the same as that for $t = t_j - 0$. Otherwise, by B_j we denote the first point after A_j of the intersection of the program trajectory corresponding to $t_j - 0$ with the closed curve formed by the arcs of the L_j -spirals (3.2). The program trajectory corresponding to $t = t_j + 0$ is the curve comprised of the arc A_jB_j of that one of the L_j -spirals containing point B_j and of the remainder of the program trajectory for $t_j - 0$ starting from point B_j .

The process described recurrently determines the program trajectory for any instant $t \ge t_0$ for any finite number of encounters. For $t \in (t_j, t_{j+1})$ the program trajectory consists, by construction, of arcs of $L_j, L_{j-1}, \ldots, L_1$ -spirals, connected in the order of decreasing index, and of the portion of ray x which includes the point at infinity. The arcs of all the spirals correspond to the polar angles $0 \le \varphi \le \pi$, but some arcs can be absent. The construction of a program trajectory at any instant completely determines the control method for point E. The real trajectory of point E consists of arcs of L_j -spirals and of a portion of ray x, and to accomplish this trajectory it is sufficient to measure the positions of points P_i only at the encounter instants. It remains to select the parameters L and \varkappa so as to ensure the finiteness of the number of encounters and the evasion of point E from all P_1, \ldots, P_n while its motion remains in the ε -neighborhood of the nominal motion.

4. Estimate of the distances. At first we assume certain estimates. Suppose that immediately before the *j*-th encounter $(t = t_j - 0)$, $j \ge 1$ the program trajectory starts off on an arc of an L_p -spiral, $p \le j - 1$, of nonzero length, after which there follows an arc of an L_q -spiral, $q \le p - 1$. Figure 2 shows an arc A_pB_p of an



 L_p -spiral with pole Q_p and the arcs of two L_j -spirals with pole Q_j . As a result of the construction in Sect. 3 we obtain a program trajectory for the instant $t = t_j + 0$, a section $A_j B_j B_p$ of which is shown in Fig. 2 by a heavy line with arrows. For $t \ge t_j$ we estimate the distance EP_i from point E up to that point P_i with which the *j*-th encounter occurred. At first we assume that the next (j + 1)-st encounter does not take place so long as point E moves over the section $A_j B_j B_p$ of the program trajectory. On

the arc A_jB_j of the L_j -spiral we have $EP_i \ge L_j$ in accord with the property of a logarithmic spiral (see Sect. 2). Let us estimate in two ways the distance EP_i as point E moves along the arc B_jB_p .

We introduce into consideration a point E' moving with a constant velocity v along the straight line A_jB_j from the point B_j in the opposite direction of A_j . Here we suppose that the point E' is located at B_j at the very same instant t' as point E. Applying to points E' and P_i the reasonings presented at the end of Sect. 2 for the points E and P, we obtain that $E'P_i \ge L_j$ for $t \ge t'$. By the triangle inequality we have

$$EP_i \geqslant E'P_i - EE' \geqslant L_j - EE' \tag{4.1}$$

Since points E and E' have a velocity v of like magnitude and coincide at the instant t', we obtain t

$$EE' = \left| v \int_{t'} \left[\mathbf{e}(t) - \mathbf{e}' \right] dt \right|, \quad t \ge t'$$
(4.2)

Here e' is the unit vector of the straight line A_jB_j and e (t) is the unit vector of the tangent to arc B_jB_p . By s we denote the current length of an arc of curve B_jB_p , counted off from point B_j . We have

$$|\mathbf{e}(t) - \mathbf{e}'| = \left|\mathbf{e}(t') - \mathbf{e}' + \int_{t'}^{t} \frac{d\mathbf{e}}{dt} dt\right| \leq |\mathbf{e}(t') - \mathbf{e}'| + \int_{0}^{s} \left|\frac{de}{ds}\right| ds \quad (4.3)$$

The unit vector e' of the chord A_jB_j equals the unit vector of the tangent at some point of the L_p -spiral, lying between A_j and B_j . By s' we denote the length of the arc of the L_p -spiral from this intermediate point to point B_j ; from (4.3) we obtain

$$|\mathbf{e}(t) - \mathbf{e}'| \leqslant \int_{0}^{s'} \left| \frac{d\mathbf{e}}{ds} \right| ds + \int_{0}^{s} \left| \frac{d\mathbf{e}}{ds} \right| ds \leqslant \frac{s+s'}{\rho_m} < \frac{s+s''}{\rho_m}$$
(4.4)

Here we have used the inequality $| de / ds | \leq \rho_m^{-1}$, where ρ_m is the minimal radius of curvature of the L_p -spiral and s'' is the length of the arc A_jB_j of this spiral. The radius of curvature of the L_p -spiral defined by Eq.(3.2) is

$$\rho = (R^2 + R_{\varphi^2})^{t_1} (R^2 + 2R_{\varphi^2} - RR_{\varphi\varphi})^{-1} = L_p (\lambda^2 + 1)^{1/2} e^{\lambda \varphi}$$

Here the subscripts φ denote differentiation with respect to φ_p , while the subscript p has been dropped.

For $\phi \ge 0$ the minimal radius of curvature is

$$\rho_m = L_p \sqrt{\lambda^2 + 1} \tag{4.5}$$

We estimate the length s'' of the arc A_jB_j of the L_p -spiral using relation (2.2) for the L_p -spiral and the triangle inequality

$$s'' = (Q_p B_j - Q_p A_j) k^{-1} \leqslant A_j B_j k^{-1} \leqslant (Q_j B_j + Q_j A_j) k^{-1} \leqslant L_j k^{-1} (e^{\lambda \pi} + 1)$$
(4.6)

In the estimate (4.6) we have used the relations

$$Q_j A_j = L_j, \quad Q_j B_j \leqslant L_j e^{\lambda \pi}$$
 (4.7)

following from (3.2). Substituting inequality (4.4) into (4.2) and integrating, we obtain

$$EE' < (1/2s^2 + ss'') / \rho_m$$
 (4.8)

Introducing relations (4.8), (4.5) and (4.6) into inequality (4.1) and using notation (2.5), we find L = L = L = L = L = L (4.9)

$$EP_{i} > L_{j} - L_{p}^{-1}a_{1}s^{2} - L_{j}L_{p}^{-1}a_{2}s, \quad s \ge 0$$

$$a_{1} = \frac{1}{2} (\lambda^{2} + 1)^{-1/2}, \quad a_{2} = \lambda^{-1} (e^{\lambda \pi} + 1)$$
(4.9)

For an estimate of the distance EP_i in another way we note that point P_i occupies

position Q_j at $t = t_j$ and its velocity does not exceed kv. Therefore,

$$EP_i \ge Q_j E - Q_j P_i \ge (B_j E - Q_j B_j) - kv (t - t_j) \ge$$

$$B_j E - L_j e^{\lambda \pi} - k (s_j + s)$$

$$(4.10)$$

Here we have twice used the triangle inequality for the estimates of EP_i and Q_jE_i , as well as the inequality (4.7) for Q_jB_j . The length of the arc A_jB_j of the L_j -spiral is denoted by s_j . We estimate it, taking equality (2.2) and estimates (4.7) into account

$$s_j = k^{-1} \left(Q_j B_j - Q_j A_j \right) \leqslant L_j k^{-1} \left(e^{\lambda \pi} - 1 \right)$$
(4.11)

Denoting

$$R = Q_p E, \quad R_* = Q_p B_j, \quad \chi = \angle B_j Q_p E$$

for brevity and using the equalities $R = R_* e^{\lambda \chi} = R_* + ks$ stemming from relations (3.2) and (2.2) for the L_p -spiral, we obtain (see Fig. 2)

$$B_{j}E = (R^{2} + R_{*}^{2} - 2RR_{*}\cos\chi)^{1/s} = (R - R_{*}) [1 + (4.12) 4 \sin^{2}(\chi/2) RR_{*}(R - R_{*})^{-2}]^{1/s} = ks [1 + 4\sin^{2}(\chi/2) e^{\lambda\chi} \times (e^{\lambda\chi} - 1)^{-2}]^{1/s} = ks [1 + \sin^{2}(\chi/2) sh^{-2}(\lambda\chi/2)]^{1/s} \quad (0 \le \chi \le \pi)$$

It is easy to verify by differentiation that on the interval $0 \le \chi \le \pi$ the function $\sin (\chi / 2) \operatorname{sh}^{-1} (\lambda \chi / 2)$ decreases monotonically for any $\lambda > 0$ and, therefore, achieves its minimum for $\chi = \pi$. Then from (4.12) we obtain

$$B_{j}E \geqslant ks \left[1 + sh^{-2} (\lambda \pi / 2)\right]^{1/2} = ks \operatorname{cth} (\lambda \pi / 2)$$
(4.13)

Introducing inequalities (4, 11) and (4, 13) into inequality (4, 10) and using notation (2, 5), we find

$$EP_{i} \ge a_{3}s - a_{4}L_{j}, \quad s \ge 0$$

$$a_{3} = k \left[\operatorname{cth} (\lambda \pi / 2) - 1 \right] = 2\lambda (1 + \lambda^{2})^{-1/2} (e^{\lambda \pi} - 1)^{-1}$$

$$a_{4} = 2e^{\lambda \pi} - 1 > 1$$

$$(4.14)$$

Comparing the two estimates (4.9) and (4.14), we obtain

$$\begin{split} EP_i &\ge \max \left[f_1 \left(s \right), \quad f_2 \left(s \right) \right] \ge \min_{s \ge 0} \ \max \left[f_1 \left(s \right), \quad f_2 \left(s \right) \right] \quad (4.15) \\ f_1 \left(s \right) &= L_j - L_p^{-1} a_1 s^2 - L_j L_p^{-1} a_2 s, \quad f_2 \left(s \right) = a_3 s - a_4 L_j \end{split}$$

The function $f_1(s)$ decreases monotonically while the function $f_2(s)$ increases monotonically with the growth of s for $s \ge 0$; $f_1(0) > 0$ and $f_2(0) < 0$. The minimum in (4.15) is reached for the $s_* > 0$ for which

$$f_1(s_*) = f_2(s_*), \quad EP_i \ge f_2(s_*) = L_j\mu$$
 (4.16)

Here μ is a dimensionless quantity introduced by the last relation in (4.16). From this relation, using (4.15), we express

$$s_* = L_j (a_4 + \mu) a_3^{-1}$$
 (4.17)

We substitute equality (4.17) and the expressions (4.15) for f_1 and f_2 into the first equation of (4.16) and, next, we solve the resulting equation relative to L_j . We obtain

$$\frac{L_j}{L_p} = g(\mu), \quad g(\mu) = \frac{a_3^2(1-\mu)}{(a_4+\mu)(a_1a_4+a_2a_3+a_1\mu)}$$
(4.18)

The function $g(\mu)$ decreases strictly on the interval [0, 1]; consequently, the inverse function g^{-1} exists which is continuous and decreases strictly on the interval [0, g(0)]. Therefore, allowing further for relations (3. 1) and for the inequality $j - p \ge 1$, we obtain

$$\mu = g^{-1}(x^{j-p}) \geqslant g^{-1}(x), \quad 0 < x < g(0)$$
(4.19)

We note that

$$g (0) < a_3^2 a_4^{-2} a_1^{-1} < a_3^2 a_1^{-1} = 8\lambda^2 (1 + \lambda^2)^{-1/2} (e^{\lambda \pi} - 1)^{-2} < 8 [\lambda / (e^{\lambda \pi} - 1)]^2 < 8\pi^{-2} < 1 \quad (\lambda > 0)$$

follows from relations (4, 18), (4, 9) and (4, 14). Substituting inequality (4, 19) into(4, 16), we have $EP > L e^{-1}(\omega)$ (4, 20)

$$EP_i \geqslant L_j g^{-1}(\varkappa) \tag{4.20}$$

Thus, as point E moves along the arc $B_j B_p$ the estimate (4.20) is valid for any \varkappa from the interval

$$0 < \kappa < g(0) < 1$$
 (4.21)

Since under conditions (4.21) we have $g^{-1}(x) < 1$, inequality (4.20) is valid as well for motion along the arc A_jB_j of the L_j -spiral, where $EP_i \ge L_j$. The fulfillment of conditions (4.21) guarantees estimate (4.20) as point E moves from A_j up to its departure at the point B_p on the arc of the L_q -spiral, $q \le p - 1$. This assertion is valid, of course, also when one or both arcs A_jB_j and B_jB_p are zero.

We assume above that the next (j + 1)-st encounter does not occur as point Emoves along the section $A_j B_j B_p$. We now relinquish this assumption. Let the point E experience after the instant t_j encounters with the points P_1, \ldots, P_n and let $v(t) \ge 0$ be the number of these encounters on the interval (t_j, t) . Let τ denote the instant when point E first goes onto the program trajectory corresponding to the instant $t_j + 0$ after point B_p . In other words, τ is the first instant after t_j that point E goes onto some L_r -spiral, $r \le q \le p - 1$. Let us consider a point E_* moving at the velocity v on the section $A_j B_j B_p$ of the program trajectory. Suppose that point E_* coincides with E at instant t_j and arrives at point B_p at instant τ_* . Then, in accord with the triangle inequality and the estimate (4.20) obtained for the point E_* , we have

$$EP_i \geqslant E_*P_i - EE_* \geqslant L_jg^{-1}(\mathbf{x}) - EE_*, \quad t_j \leqslant t \leqslant \tau_*$$

$$(4.22)$$

Let us estimate the distance between points E and E_{*}

$$EE_{*} = \left| \int_{t_{j}}^{t} \left[\mathbf{v}(t) - \mathbf{v}_{*}(t) \right] dt \right|, \quad t_{j} \leq t \leq \tau_{*}$$
(4.23)

Here v (t) and v_{*} (t) are the velocity vectors of points E and E_{*} , respectively, equal in magnitude to a constant v. For the sections of the trajectory of point E, belonging to the trajectory of point E_{*} , the corresponding contribution to integral (4. 23) equals zero. For the remaining sections integral (4. 23) is majorized by twice their total length, i.e., $EE = 2\Sigma$ $t \le t \le T_{*}$ (4. 24)

$$EE_* \leqslant 2\Sigma, \quad t_j \leqslant t \leqslant \tau_* \tag{4.24}$$

Here Σ is the sum of the arcs of the $L_{j+1}, \ldots, L_{j+\nu}$ -spirals, which we estimate by means of inequality (4.11) and formula (3.1)

$$\Sigma \leqslant s_{j+1} + s_{j+2} + \ldots + s_{j+\nu} \leqslant L_j k^{-1} (e^{\lambda \pi} - 1) \varkappa (1 - \varkappa^{\nu}) (1 - \varkappa)^{-1} \quad (4.25)$$

If $\tau \leq \tau_{*}$, estimates (4.22) and (4.24) are valid on the whole interval $[t_{j}, \tau]$. If,

however, $\tau > \tau_*$, a further consideration of $t \in [\tau_*, \tau]$ is needed. The path traversed by point E in the time $[t_i, t]$ does not exceed the path traversed by point E_* in the time $[t_j, \tau_*]$ by more than Σ . Therefore, point E traverses a path no greater than Σ in the time $t - \tau_*$ and $t - \tau_* \leq \Sigma / v$. During this time the distance EP_i can decrease by no more than

$$v (1 + k) (t - \tau_*) \leq (1 + k) \Sigma$$

Subtracting this quantity from the right-hand side of inequality (4, 22) and using the inequalities (4, 24) and (4, 25), we obtain the required estimate

$$EP_{i} \ge L_{j}g^{-1}(x) - (3+k)\Sigma \ge L_{j}[g^{-1}(x) - (3k^{-1} + (4.26))](e^{\lambda \pi} - 1) \times (1-x^{\nu})(1-x)^{-1}], \quad t_{j} \le t \le \tau$$

Note that the boundedness of Σ follows from formula (4.25) and, consequently, that of τ as $\nu \to \infty$.

5. Choice of the maneuver parameters. Let us require that the inequality $g^{-1}(x) > (3k^{-1} + 1)(e^{\lambda \pi} - 1) \times (1 - x^{\nu}) (1 - x)^{-1} + x^{\nu+1}$ (5.1)

be satisfied for all integers \mathbf{v} . Under condition (5.1), from inequality (4.26) follows $EP_i \ge L_{j+\nu+1}$ for all $t_j \le t \le \tau$. This implies that among the encounters taking place in the interval (t_j, t) there is no encounter with point P_i . Therefore, under condition (5.1), encounters with point P_i do not occur on the whole interval (t_j, τ) . We rewrite condition (5.1) as

$$g^{-1}(x) \ge bx - x^{v+1}(b-1), \quad b = (3k^{-1}+1)(e^{\lambda \pi}-1)(1-x)^{-1}$$
 (5.2)

Let us estimate quantity b, using formulas (2, 5). We obtain

$$b > 3k^{-1}\lambda\pi > 3\pi > 1$$

$$0 < \varkappa \leqslant \varkappa_* \tag{5.3}$$

where \varkappa_{\pm} is the single positive root of the equation

$$g(\mathbf{x}_{*}) = \mathbf{x}_{*}, \quad \mathbf{x}_{*} > 0 \tag{5.4}$$

We select the parameter \varkappa from interval (5.3). Here the motion of point E described in Sect. 3 possesses the following property. If the *j*-th encounter took place with point P_i as point E moved along an arc of the L_p -spiral, $p \leq j - 1$, then the next encounter with this same point P_i can take place no earlier than after point E has gone onto an arc of the L_r -spiral, $r \leq p - 1$. This property extends to ray x which can be taken as an L_p -spiral.

Without loss of generality suppose that the points P_i have been numbered in the order in which their first encounters with point E takes place. Then, the first encounter with point P_1 occurs on ray x and, in accordance with the property established, there are no other encounters with this point. The first encounter with point P_2 can take place either on an arc of the L_1 -spiral or on ray x after leaving this arc. In the first case a repeated encounter with point P_2 can occur only after going onto ray x, while in the second case it does not occur at all. Let us estimate the total number N(n) of encounters with with n pursuers. From the preceding arguments follows $N(1) \leq 1$ and $N(2) \leq 3$.

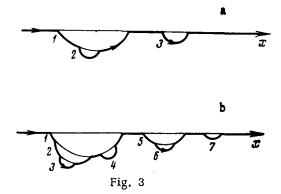


Figure 3 shows schematically, not to scale, typical trajectories of point E for (a) n=2, N=3 and (b) n=3, N=7; the digits indicate the encounter numbers.

The following inequality, provable by induction, is valid:

$$N(n) \leqslant 2^n - 1 \qquad (5.5)$$

Inequality (5.5) is true for n = 1, 2, 3. Let it be true for n. Then, in the case of n + 1 pursuers the total number of encounters can be estimated as

follows. After the first encounter with point P_1 the point E moves along the L_1 -spiral and can encounter the remaining n points. Not more than N(n) encounters with these points can occur before going onto ray x. After going onto ray x point P_1 need not be taken into account since encounters with it do not occur any more, but N(n) further encounters can take place with the remaining points. Thus, with due regard to (5.5)

$$N(n+1) \leq 1 + N(n) + N(n) \leq 2^{n+1} - 1$$

and inequality (5.5) has been proved by induction.

Let us now estimate the distance between point E and the point E° accomplishing the nominal motion. Analogously to inequalities (4.23) – (4.25) we obtain

$$EE^{\circ} \leq 2 [s_1 + s_2 + \ldots + s_{N(n)}] < 2Lk^{-1} (e^{\lambda \pi} - 1) (1 - \varkappa)^{-1}$$
 (5.6)

The motion of point E must lie in the ε -neighborhood of the nominal motion, i.e., $EE^{\circ} \leqslant \varepsilon$. For this, according to (5.6), it suffices to take

$$0 < L \le \min \left[\frac{1}{2} \varepsilon k \left(1 - \varkappa \right) \left(e^{\lambda \pi} - 1 \right)^{-1}, \ \delta_0 \right]$$
 (5.7)

We have here also allowed for the condition $L \leq \delta_0$ imposed above. Thus the parameters L and \varkappa must be selected within the limits (5.3) and (5.7). Here the evasion maneuver of Sect. 3 satisfies all the conditions imposed and the number of encounters satisfies inequality (5.5).

According to (4.18) and (5.4) the determination of \varkappa_* requires solving a cubic equation. Let us obtain a simple explicit expression for $\varkappa = \varkappa_0$ lying within limits (5.3). Together with the function g from (4.18) we consider the linear function

$$g_0(\mu) = (1 - \mu) g_1, \quad g_1 = a_3^2 (a_4 + 1)^{-1} (a_1 a_4 + a_2 a_3 + 1)^{-1}$$
 (5.8)

Comparing (4.18) and (5.8) we see that $g_0(\mu) \leqslant g(\mu)$ for $0 \leqslant \mu \leqslant 1$, and the root \varkappa_0 of the equation $g_0(\varkappa_0) = \varkappa_0$ (5.9)

lies within the limits (5.3). Solving Eq. (5.9) with due regard to (5.8), we find the quantity required $\chi_{e} = \sigma_{e} / (1 + \sigma_{e})$ (5.10)

$$\varkappa_0 = g_1 / (1 + g_1) \tag{5.10}$$

Let us estimate further the minimal distance δ between the points E and P_1, \ldots, P_n for $t \ge t_0$. Since the maximum number of encounters does not exceed N(n)

F.L.Chernouc'ko

from (5.5)

$$\delta = \min_{i,t} EP_i \geqslant L_{N(n)+1} = L \varkappa^{N(n)} \geqslant L \varkappa^{(2^n-1)}$$

$$1 \leqslant i \leqslant n, \quad t \geqslant t_0$$
(5.11)

If we select the maximum possible L allowed by inequality (5.7), then from (5.11) we obtain $\delta \sim \min \{C, (L), \delta, 1\}$ (5.12)

$$\begin{array}{l} 0 \geqslant \min \left[C_n(k) \varepsilon, \ C_n^*(k) \delta_0 \right] \\ C_n(k) = \frac{1}{2} k \left(1 - \varkappa \right) \ (e^{\lambda \pi} - 1)^{-1} \varkappa^{(2^n - 1)}, \quad C_n^*(k) = \varkappa^{(2^n - 1)} \end{array}$$

As \varkappa we can take any number from interval (5.3), for example, the \varkappa_0 from (5.10). We obtain explicit expressions for \varkappa_0 , $C_n(k)$ and $C_n^*(k)$ by substituting relations (5.8), (4.9), (4.14) and (2.5) into formulas (5.10) and (5.12). In particular, when the capabilities of the pursuers approach the capability of the evading point $(k \rightarrow 1)$, we find according to the formulas indicated above

$$\begin{aligned} \varkappa_0 &\approx 2\lambda e^{-4\pi\lambda}, \quad C_n(k) \approx 0.5 e^{-\pi\lambda} \varkappa_0^{(2^n-1)} \\ C_n^*(k) &\approx \varkappa_0^{(2^n-1)}, \quad \lambda = k \left(1 - k^2\right)^{-1/2} \to \infty, \quad k \to 1 \end{aligned}$$

We note that the evasion strategy proposed in Sect. 3 for point E, as well as the bounds (5.3) and (5.7) on the choice of parameters L and \varkappa , do not depend upon the number n of pursuers.

Translated by N. H. C.

UDC 62-50

ON A PROBLEM OF *l*-escape

PMM Vol. 40, № 1, 1976, pp. 25-37 P. B. GUSIATNIKOV (Moscow) (Received February 5, 1975)

We give criteria for escape and l-escape in nonlinear differential games. The paper is closely related to the investigations in [1-8].

1. Let the motion of a vector z in an *n*-dimensional Euclidean space R be described by the vector differential equation

$$dz / dt = f(t, z, u, v)$$
 (1.1)

where $t \ge 0$; $u \in P$ and $v \in Q$ are control parameters varying on sets P and Q compact in R. Regarding the right-hand side of Eq. (1.1) we assume that:

a) f(t, z, u, v) is continuous in $(t, z, u, v) \subset X = [0, +\infty) \times R \times P \times Q$; b) the inequality

$$|f(t, z_1, u, v) - f(t, z_2, u, v)| \leq k_* |z_1 - z_2|$$

where k_* is a constant depending only on c, is satisfied for any $u \in P$, $v \in Q$ and for $t \ge 0$, z_1 , $z_2 \in R$, $|t| + |z_1| + |z_2| \le c$;

c) a constant B exists such that

$$|(z \cdot f(t, z, u, v))| \leq B(1 + |z|^2)$$

20